4.4

Positive allosteric modulation of $\alpha 4\beta 2$ nicotinic receptors potentiates some CNS effects of the $\alpha 4\beta 2$ agonist, ABT-594

S.R. Franklin*, E.G. Mohler, V.A. Komater, H. Robb, R.J. Radek, N.R. Rustay, J.W. Brown, M. Gopalakrishnan, M.W. Decker, L.E. Rueter

Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-3500, United States

Combination of an $\alpha 4\beta 2$ positive allosteric modulator (PAM), NS9283 (A-969933), with inactive doses of a full $\alpha 4\beta 2$ nicotinic receptor agonist, ABT-594, results in a marked, dose-related increase in pain relief in several animal pain models (see Lee et al., accompanying abstract) leading to an increased therapeutic window vs. gastrointestinal side effects. To evaluate the effect of this combination on CNS side effects, we examined A-969933 and ABT-594 alone or in combination in 3 assays: cortical activation measured by slow-wave electroencephalogram (EEG), nicotine (NIC) drug discrimination, and NIC- or ABT-594-sensitized locomotor activity. Sprague-Dawley rats implanted with cortical electrodes were injected with ABT-594 (0, 0.01 μ mol/kg) and/or A-969933 (3 µmol/kg), prior to EEG testing. A-969933 significantly potentiated ABT-594-induced lowering of EEG amplitude, but neither had significant effect when administered alone. Other rats were trained to discriminate a 2.5 µmol/kg dose of NIC from saline in a 2-lever drug discrimination task. A dose-response test with ABT-594 (0, 0.0062, 0.019 and 0.062 µmol/kg) showed full generalization to the NIC cue at 0.062- μ mol/kg (ED₅₀ = 0.03μ mol/kg), A-969933 (0.3, 3. 30 µmol/kg) given alone produced only saline lever selection, while combined injection of A-969933 (3 µmol/kg) and a non-effective dose of ABT-594 (0.01 µmol/kg) resulted in a non-significant 2.6fold increase in NIC-lever selection. Locomotor activity (LMA) was recorded 4 d/week in 60-min sessions following injections of vehicle, 0.01 or 0.3 μmol/kg ABT-594, 3.5 μmol/kg A-969933, or combination of the low dose of ABT-594 and A-969933. LMA rapidly sensitized in rats receiving 0.3 µmol/kg ABT-594, resulting in ~4fold increases in activity, but LMA failed to increase above that of vehicle in the other dose groups. In a separate LMA experiment, rats injected with vehicle, 0.1 µmol/kg ABT-594, or 0.4 mg/kg NIC 4 d/week displayed a multi-fold increase in LMA for the ABT-594 and NIC groups. Following 31/2 weeks of sensitization, challenge injections of 3.5 or 10 µmol/kg A-969933 alone produced only vehicle levels of LMA, as did challenge injections of the high dose of A-969933 plus 0.01 μ mol/kg ABT-594. Overall, the combination of this $\alpha 4\beta 2$ PAM and $\alpha 4\beta 2$ agonist at doses producing marked alleviation of pain in various pain assays results in (1) cortical activation similar to higher doses of the agonist alone, (2) incomplete generalization to the NIC stimulus, and (3) no apparent increase in LMA activity in sensitized rats. These data suggest that activation of nicotinic $\alpha 4\beta 2$ receptors contribute to some, but not all, behavioral properties of nAChR ligands such as ABT-594.

doi:10.1016/j.bcp.2009.06.083

4.5

GZ556A and ZZ204G are novel small molecule antagonists of $\alpha9\alpha10$ nAChRs and are analgesic in rats

J.M. McIntosh^{1,2,*}, L.P. Dwoskin³, P.A. Crooks³, J.R. Holtman Jr.⁴

- ¹ Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, United States
- ² Department of Biology, University of Utah, Salt Lake City, UT 84108, United States
- ³ Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States
- ⁴ Department of Anesthesiology, University of Kentucky, Lexington, KY 40536. United States

Chronic pain afflicts tens of millions of individuals worldwide. Although there are numerous analgesics, these work through a limited number of mechanisms of action. Often, even complex combinations of these medications are insufficient to adequately treat disabling pain. Neuropathic pain is particularly treatment resistant. Recent studies indicate that small peptides from cone snails (α -conotoxins) are analgesic. These peptides potently block $\alpha 9\alpha 10$ nAChRs. In an effort to obtain small molecule analgesics that work by the same mechanism we evaluated a series of tris- and tetrakis-quaternary ammonium salts. Two compounds, GZ556A and ZZ204G potently blocked rat $\alpha 9\alpha 10$ nAChRs expressed in Xenopus oocytes, with IC50 values of 4.3 (2.2-8.0) nM and 0.65 (0.46–0.92) nM respectively (numbers in parenthesis are 95% confidence intervals). In addition, these compounds were 10- to 5000-fold less potent on other tested nAChR including $\alpha 1\beta 1\delta \epsilon$. α 2 β 2, α 2 β 4, α 3 β 2, α 3 β 4, α 4 β 2, α 4 β 4, α 6/ α 3 β 2 β 3, α 6/ α 3 β 4 and α 7 subtypes. GZ556A and ZZ204G were tested in the rat chronic constriction injury and formalin models of neuropathic and persistent pain. Both compounds produced analgesia at doses lower than those that caused motor impairment as assessed by rotorod. Tolerance to analgesic effects is a major limiting factor in opiate-based medications. Tolerance was not observed with either GZ556A or ZZ204G over seven days of administration. GZ556A and ZZ204G represent novel $\alpha 9\alpha 10$ nAChR antagonists and lead compounds for analgesics.

Acknowledgements: Supported by NIH grants MH53631 (JMM), U19 DA017548 (LPD, PAC) and DA022091 (JRH).

doi:10.1016/j.bcp.2009.06.084

4.6

Antidepressant-like activity of AMOP-H-OH ('sazetidine-A') in the forced swim test is mediated by high affinity nicotinic acetylcholine receptors

B.J. Caldarone*, M. Manzano, N.E. Paterson, A.P. Kozikowksi, B.E. Olivier, A. Ghavami

PsychoGenics, Inc., 765 Old Saw Mill River Rd., Tarrytown, NY 10591, United States

Both preclinical and clinical data suggest a role for nicotinic acetylcholine receptors (nAChRs) in depression. Both nAChR agonists and antagonists reduce depressive symptoms in humans and have antidepressant-like effects in rodent models. This study evaluated the action of the selective $\alpha 4\beta 2$ partial agonist AMOP-H-OH (6-[5-(Azetidin-2-ylmethoxy) pyridin-3-yl]hex-5-yn-1-ol (aka Sazetidine-A)) in the forced swim test in mice. AMOP-H-OH produced a robust reduction in immobility in the forced swim test in comparison to weaker effects seen with the $\alpha 4\beta 2$ partial agonist varenicline and the non-competitive nAChR antagonist mecamy-